Config
Instead of setting multiple CLI options, you can create a config file.
You can create a config using the xlranker init
command. This will run an interactive prompt that will create a custom config. If you just want the default configs, run xlranker init --default
.
Config Options
- network (Required)
- path to the network containing peptide sequences. Described in input_data/peptide_pairs.
- data_folder (Required)
- path to a directory containing multi-omic data used by the machine learning model. Described in input_data/omic_data.
- seed (Defaults to
None
) - integer to seed random number generators. If not set, random seed selected.
- custom_mapping_table (Defaults to
None
, strongly recommended) - path to a custom mapping table (recommended). Can either be a FASTA file or a TSV file. Described in input_data/fasta and input_data/custom_mapping_table. If not set, uses UNIPROT human one sequence per gene acquired on May 29, 2025.
- is_fasta (Defaults to
True
) true
if thecustom_mapping_table
is a FASTA file.- fasta_type
- Valid options
GENCODE
orUNIPROT
. Type of FASTA file used. Must be set if custom_mapping_table is set. - only_human (Defaults to
true
) true
if the data in the pipeline only contains human data. Iftrue
, allows for better negative pair generation and PPI information.- output (Defaults to
xlranker_output
) - Output directory for the pipeline. Contains the final network, info file, and plots.